Spectral Regression for Dimensionality Reduction∗

نویسندگان

  • Deng Cai
  • Xiaofei He
  • Jiawei Han
چکیده

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, these algorithms only provide the embedding results of training samples. There are many extensions of these approaches which try to solve the out-of-sample extension problem by seeking an embedding function in reproducing kernel Hilbert space. However, a disadvantage of all these approaches is that their computations usually involve eigen-decomposition of dense matrices which is expensive in both time and memory. In this paper, we propose a novel dimensionality reduction method, called Spectral Regression (SR). SR casts the problem of learning an embedding function into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression based framework, different kinds of regularizers can be naturally incorporated into our algorithm which makes it more flexible. SR can be performed in supervised, unsupervised and semisupervised situation. It can make efficient use of both labeled and unlabeled points to discover the intrinsic discriminant structure in the data. Experimental results on classification and semi-supervised classification demonstrate the effectiveness and efficiency of our algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Compressed Spectral Regression for Efficient Nonlinear Dimensionality Reduction

Spectral dimensionality reduction methods have recently emerged as powerful tools for various applications in pattern recognition, data mining and computer vision. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal the low dimensional structure of the high dimensional data. One of the limitations of various spectral dimen...

متن کامل

Spectral Regression Discriminant Analysis for Hyperspectral Image Classification

Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computa...

متن کامل

Spectral Regression for Dimensionality Reduction by Deng Cai , Xiaofei He , and Jiawei Han May 2007

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigenmap...

متن کامل

Abstract Projecting a high dimensional feature into a low- dimensional feature without compromising the feature

Projecting a high dimensional feature into a lowdimensional feature without compromising the feature characteristic is a challenging task. This paper proposes a novel dimensionality reduction constituted from the integration of extreme learning machine (ELM) and spectral regression (SR). The ELM in the proposed method is built on the structure of the unsupervised ELM. The hidden layer weights a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007